Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 17(3): e0264713, 2022.
Article in English | MEDLINE | ID: covidwho-1745319

ABSTRACT

In most big cities, public transports are enclosed and crowded spaces. Therefore, they are considered as one of the most important triggers of COVID-19 spread. Most of the existing research related to the mobility of people and COVID-19 spread is focused on investigating highly frequented paths by analyzing data collected from mobile devices, which mainly refer to geo-positioning records. In contrast, this paper tackles the problem by studying mass mobility. The relations between daily mobility on public transport (subway or metro) in three big cities and mortality due to COVID-19 are investigated. Data collected for these purposes come from official sources, such as the web pages of the cities' local governments. To provide a systematic framework, we applied the IBM Foundational Methodology for Data Science to the epidemiological domain of this paper. Our analysis consists of moving averages with a moving window equal to seven days so as to avoid bias due to weekly tendencies. Among the main findings of this work are: a) New York City and Madrid show similar distribution on studied variables, which resemble a Gauss bell, in contrast to Mexico City, and b) Non-pharmaceutical interventions don't bring immediate results, and reductions to the number of deaths due to COVID are observed after a certain number of days. This paper yields partial evidence for assessing the effectiveness of public policies in mitigating the COVID-19 pandemic.


Subject(s)
COVID-19/mortality , Transportation , Adult , COVID-19/epidemiology , Cities/epidemiology , Cities/statistics & numerical data , Data Science/methods , Epidemiological Models , Humans , Mexico/epidemiology , New York City/epidemiology , Spain/epidemiology , Transportation/methods , Transportation/statistics & numerical data
2.
Nat Commun ; 12(1): 5757, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1447304

ABSTRACT

The large amount of biomedical data derived from wearable sensors, electronic health records, and molecular profiling (e.g., genomics data) is rapidly transforming our healthcare systems. The increasing scale and scope of biomedical data not only is generating enormous opportunities for improving health outcomes but also raises new challenges ranging from data acquisition and storage to data analysis and utilization. To meet these challenges, we developed the Personal Health Dashboard (PHD), which utilizes state-of-the-art security and scalability technologies to provide an end-to-end solution for big biomedical data analytics. The PHD platform is an open-source software framework that can be easily configured and deployed to any big data health project to store, organize, and process complex biomedical data sets, support real-time data analysis at both the individual level and the cohort level, and ensure participant privacy at every step. In addition to presenting the system, we illustrate the use of the PHD framework for large-scale applications in emerging multi-omics disease studies, such as collecting and visualization of diverse data types (wearable, clinical, omics) at a personal level, investigation of insulin resistance, and an infrastructure for the detection of presymptomatic COVID-19.


Subject(s)
Data Science/methods , Medical Records Systems, Computerized , Big Data , Computer Security , Data Analysis , Health Information Interoperability , Humans , Information Storage and Retrieval , Software
3.
PLoS Biol ; 19(9): e3001398, 2021 09.
Article in English | MEDLINE | ID: covidwho-1440978

ABSTRACT

Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called "vibration of effects" (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake associated with eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.


Subject(s)
Data Science/methods , Models, Statistical , Observational Studies as Topic/statistics & numerical data , Epidemiologic Methods , Humans
5.
PLoS One ; 16(5): e0252147, 2021.
Article in English | MEDLINE | ID: covidwho-1238775

ABSTRACT

BACKGROUND: The WHO announced the epidemic of SARS-CoV2 as a public health emergency of international concern on 30th January 2020. To date, it has spread to more than 200 countries and has been declared a global pandemic. For appropriate preparedness, containment, and mitigation response, the stakeholders and policymakers require prior guidance on the propagation of SARS-CoV2. METHODOLOGY: This study aims to provide such guidance by forecasting the cumulative COVID-19 cases up to 4 weeks ahead for 187 countries, using four data-driven methodologies; autoregressive integrated moving average (ARIMA), exponential smoothing model (ETS), and random walk forecasts (RWF) with and without drift. For these forecasts, we evaluate the accuracy and systematic errors using the Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE), respectively. FINDINGS: The results show that the ARIMA and ETS methods outperform the other two forecasting methods. Additionally, using these forecasts, we generate heat maps to provide a pictorial representation of the countries at risk of having an increase in the cases in the coming 4 weeks of February 2021. CONCLUSION: Due to limited data availability during the ongoing pandemic, less data-hungry short-term forecasting models, like ARIMA and ETS, can help in anticipating the future outbreaks of SARS-CoV2.


Subject(s)
COVID-19/epidemiology , Data Science/methods , Models, Statistical , Data Science/standards , Humans , Practice Guidelines as Topic , Software/standards
6.
Sci Rep ; 11(1): 5304, 2021 03 05.
Article in English | MEDLINE | ID: covidwho-1118815

ABSTRACT

We propose a novel data-driven framework for assessing the a-priori epidemic risk of a geographical area and for identifying high-risk areas within a country. Our risk index is evaluated as a function of three different components: the hazard of the disease, the exposure of the area and the vulnerability of its inhabitants. As an application, we discuss the case of COVID-19 outbreak in Italy. We characterize each of the twenty Italian regions by using available historical data on air pollution, human mobility, winter temperature, housing concentration, health care density, population size and age. We find that the epidemic risk is higher in some of the Northern regions with respect to Central and Southern Italy. The corresponding risk index shows correlations with the available official data on the number of infected individuals, patients in intensive care and deceased patients, and can help explaining why regions such as Lombardia, Emilia-Romagna, Piemonte and Veneto have suffered much more than the rest of the country. Although the COVID-19 outbreak started in both North (Lombardia) and Central Italy (Lazio) almost at the same time, when the first cases were officially certified at the beginning of 2020, the disease has spread faster and with heavier consequences in regions with higher epidemic risk. Our framework can be extended and tested on other epidemic data, such as those on seasonal flu, and applied to other countries. We also present a policy model connected with our methodology, which might help policy-makers to take informed decisions.


Subject(s)
COVID-19/epidemiology , Data Science/methods , Pandemics/prevention & control , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Geography , Health Policy , Humans , Italy/epidemiology , Pandemics/statistics & numerical data , Policy Making , Preventive Medicine/standards , Risk Assessment/methods , Risk Factors , SARS-CoV-2/pathogenicity , Time Factors
8.
Cell ; 181(6): 1189-1193, 2020 06 11.
Article in English | MEDLINE | ID: covidwho-720440

ABSTRACT

Researchers around the globe have been mounting, accelerating, and redeploying efforts across disciplines and organizations to tackle the SARS-CoV-2 outbreak. However, humankind continues to be afflicted by numerous other devastating diseases in increasing numbers. Here, we outline considerations and opportunities toward striking a good balance between maintaining and redefining research priorities.


Subject(s)
Biomedical Research , Coronavirus Infections , Pandemics , Pneumonia, Viral , Biomedical Research/economics , COVID-19 , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Data Science/instrumentation , Data Science/methods , Delivery of Health Care , Humans , Inventions , Metabolic Diseases/diagnosis , Metabolic Diseases/drug therapy , Metabolic Diseases/prevention & control , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Research
9.
PLoS One ; 15(7): e0234763, 2020.
Article in English | MEDLINE | ID: covidwho-634841

ABSTRACT

This work applies a data-driven coding method for prediction of the COVID-19 spreading profile in any given population that shows an initial phase of epidemic progression. Based on the historical data collected for COVID-19 spreading in 367 cities in China and the set of parameters of the augmented Susceptible-Exposed-Infected-Removed (SEIR) model obtained for each city, a set of profile codes representing a variety of transmission mechanisms and contact topologies is formed. By comparing the data of an early outbreak of a given population with the complete set of historical profiles, the best fit profiles are selected and the corresponding sets of profile codes are used for prediction of the future progression of the epidemic in that population. Application of the method to the data collected for South Korea, Italy and Iran shows that peaks of infection cases are expected to occur before mid April, the end of March and the end of May 2020, and that the percentage of population infected in each city or region will be less than 0.01%, 0.5% and 0.5%, for South Korea, Italy and Iran, respectively.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Data Science/methods , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , COVID-19 , Cities/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Iran/epidemiology , Italy/epidemiology , Models, Statistical , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Prognosis , Republic of Korea/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL